Zhusuan
Replaces | tray |
---|---|
Country of origin | China |
Intangible cultural heritage status | Representative List of the Intangible Cultural Heritage of Humanity |
Described at URL | http://www.unesco.org/culture/ich/en/RL/chinese-zhusuan-knowledge-and-practices-of-mathematical-calculation-through-the-abacus-00853, https://ich.unesco.org/en/RL/00853, https://ich.unesco.org/fr/RL/00853, https://ich.unesco.org/es/RL/00853 |
Zhusuan (Chinese: 珠算; pinyin: zhūsuàn; literally: "bead calculation") yaa bãngr la minim sẽn kẽed ne sõadg sẽn tũud ne suanpan bɩ Chinese abacus. Yʋʋmd 2013 soabã pʋgẽ, b gʋls-a-la UNESCO ninsabls tẽn-kɩremsã sẽn get ninsabls tẽn-kɩremsã yelle.[1] B sẽn da wa n na n yãk b sẽn na n gʋls bũmb ning zugã, sull ning sẽn get b yellã wilgame tɩ "Sẽn kẽed ne-a wã geta a Zhusuan wa bũmb sẽn wilgd b sẽn yaa nin-buiidã, la bũmb sẽn tõe n sõng-b tɩ b bãng b sẽn segd n maan to-to.
Kʋdemdã
[tekre | teke sidgem]A Zhusuan ra yaa seb-pind sẽn boond tɩ abacus b sẽn maan Siinẽ wã yʋʋm kob-gĩnd a yiib-n-soabã saabẽ, la a ra tara pãng n yɩɩd yʋʋm kob-gĩnd a 13 soabã n tãag a 16 soabã. Yʋʋm kob-gĩnd 13 soabã pʋgẽ, a Guo Shoujing (郭守敬) tũnuga ne Zhusuan n bãng bũmb ning sẽn kɩt tɩ tẽngã zug yʋʋm beẽ wã, n mik tɩ yaa rasem 365.2425. Yʋʋm kob-gĩnd piig la a yoob soabã pʋgẽ, a Zhu Zaiyu (朱載 ⁇ ) rɩka Zhusuan n maan yɩɩlã sẽn yaa Twelve-interval Equal Temperamentã. Yʋʋm kob-gĩnd piig la a yoob soabã pʋgẽ, a Wang Wensu (王文素) ne a Cheng Dawei (程大位) gʋlsa sebr sẽn boond tɩ Principles of Algorithms la General Rules of Calculation, n wilg Zhusuan matematiksã sẽn yaa to-to wã, n paas a sẽn da yaa to-to wã, tɩ kɩt tɩ Zhusuan bãngrã paam pãng n paase. Yʋʋm kob-gĩnd piig la a yoob soabã saabẽ, Zhusuan wã ra kẽe tẽns nins sẽn pẽ-a wã. [2][3]
Tẽebã pʋgẽ
[tekre | teke sidgem]Zhusuan yaa bũmb sẽn tar yõod wʋsg ne Sɩn buud-gomdã. Zhusuan tara pãn-tusdg sẽn kẽed ne Siin tẽng ninsabls tẽnsa, wala Siin ninsabls tẽnsa minung, b goama, b sɛba, b remsgo, b meebã, n naan Zhusuan ninsabls tẽnsa. Wala makre, ⁇ Iron Abacus ⁇ (鐵算盤) makda ned sẽn tõe n sõd sõma; ⁇ Plus a tãab zemsa ne a nu n paas a nu la a zãag ne a yiibu ⁇ (三下五除二; +3 = +5 − 2) rat n yeelame tɩ yaa tao-tao la b yãk yam; ⁇ 3 naoor a yopoe zemsa ne 21 ⁇ wilgdame tɩ yaa tao-tao la yãgbre; la zĩis kẽer sẽn be Chine wã, yaa minung tɩ b wilg kambã b sẽn na n maan bũmb ning b vɩɩmã pʋgẽ daar fãa, n kõ-b bũmb toor-toor b sẽn segd n maan b pipi rogmã daarã, la b bas-b tɩ b yãk b sẽn na n maan n bãng b vɩɩmã sẽn na n yɩ to-to. Bũmb ning b sẽn da tarã ra makda yam la arzɛka.[3]